https相关(证书,握手过程,加密算法) - Go语言中文社区

https相关(证书,握手过程,加密算法)


https是什么,证书认证的原理

        我们知道 HTTPS 其实就是 HTTP + SSL/TLS 的合体,它其实还是 HTTP 协议,只是在外面加了一层,SSL 是一种加密安全协议,引入 SSL 的目的是为了解决 HTTP 协议在不可信网络中使用明文传输数据导致的安全性问题。可以说,整个互联网的通信安全,都是建立在 SSL/TLS 的安全性之上的。

SSL/TLS 协议及其握手过程

        TCP 在建立连接时的三次握手,之所以需要 TCP 三次握手,是因为网络中存在延迟的重复分组,可能会导致服务器重复建立连接造成不必要的开销。SSL/TLS 协议在建立连接时与此类似,也需要客户端和服务器之间进行握手,但是其目的却大相径庭,在 SSL/TLS 握手的过程中,客户端和服务器彼此交换并验证证书,并协商出一个 “对话密钥” ,后续的所有通信都使用这个 “对话密钥” 进行加密,保证通信安全。

 

整个 SSL/TLS 的握手和通信过程,简单来说,其实可以分成下面三个阶段:

  1. 打招呼
          当用户通过浏览器访问 HTTPS 站点时,浏览器会向服务器打个招呼(ClientHello),服务器也会和浏览器打个招呼(ServerHello)。所谓的打招呼,实际上是告诉彼此各自的 SSL/TLS 版本号以及各自支持的加密算法等,让彼此有一个初步了解。

  2. 表明身份、验证身份
            第二步是整个过程中最复杂的一步,也是 HTTPS 通信中的关键。为了保证通信的安全,首先要保证我正在通信的人确实就是那个我想与之通信的人,服务器会发送一个证书来表明自己的身份,浏览器根据证书里的信息进行核实(为什么通过证书就可以证明身份呢?怎么通过证书来验证对方的身份呢?这个后面再说)。如果是双向认证的话,浏览器也会向服务器发送客户端证书。
            双方的身份都验证没问题之后,浏览器会和服务器协商出一个 “对话密钥” ,要注意这个 “对话密钥” 不能直接发给对方,而是要用一种只有对方才能懂的方式发给他,这样才能保证密钥不被别人截获(或者就算被截获了也看不懂)。

  3. 通信
    至此,握手就结束了。双方开始聊天,并通过 “对话密钥” 加密通信的数据。

     握手的过程大致如此

HTTPS 中的密码学

       HTTPS 协议之所以复杂,是为了保证通信过程中数据的安全性,而要保证通信安全,它在协议中运用了大量的密码学原理,可以说 HTTPS 是集密码学之大成。无论是在 SSL/TLS 握手的过程中,还是在加密通信的过程中,HTTPS 都涉及了大量的密码学概念,譬如,在证书的数字签名中使用了哈希算法和非对称加密算法,在加密通信的过程中使用了对称加密算法,为了防止传输的数据被篡改和重放还使用了 MAC(消息认证码)等。

要想深入了解 HTTPS 的工作原理,下面这些概念还是得好好研究下,网上已经有很多文章介绍这些概念了,我在这里总结一下。

  • 哈希

    • 哈希算法又称散列,它是一种将任意长度的数据转化为固定长度的算法
    • 哈希算法是不可逆的
    • 常见的哈希算法有 MD5 和 SHA1
  • 对称加密

    • 对称加密指的是加密和解密使用相同一个密钥
    • 对称加密的优点是速度快,缺点是密钥管理不方便,必须共享密钥
    • 常见的对称加密算法有 DES、AES、Blowfish 等
  • 非对称加密

    • 非对称加密指的是加密和解密使用不同的密钥,其中一个是公钥,另一个是私钥,公钥是公开的,私钥只有自己知道
    • 使用公钥加密的数据必须使用私钥解密,使用私钥加密的数据必须使用公钥解密
    • 公钥和私钥之间存在着某种联系,但是从公钥不能(或很难)推导出私钥
    • 非对称加密的缺点是速度慢,优点是密钥管理很方便
    • 常见的非对称加密算法有 RSA、ECC 等
  • 数字证书

关于证书

 

         简单来说,数字证书就好比介绍信上的公章,有了它,就可以证明这份介绍信确实是由某个公司发出的,而证书可以用来证明任何一个东西的身份,只要这个东西能出示一份证明自己身份的证书即可,譬如可以用来验证某个网站的身份,可以验证某个文件是否可信等等。《数字证书及 CA 的扫盲介绍》 和 《数字证书原理》 这篇博客对数字证书进行了很通俗的介绍。

        知道了证书是什么之后,我们往往更关心它的原理,在上面介绍 SSL/TLS 握手的时候留了两个问题:为什么通过证书就可以证明身份呢?怎么通过证书来验证对方的身份呢?

       这就要用到上面所说的非对称加密了,非对称加密的一个重要特点是:使用公钥加密的数据必须使用私钥才能解密,同样的,使用私钥加密的数据必须使用公钥解密。正是因为这个特点,网站就可以在自己的证书中公开自己的公钥,并使用自己的私钥将自己的身份信息进行加密一起公开出来,这段被私钥加密的信息就是证书的数字签名,浏览器在获取到证书之后,通过证书里的公钥对签名进行解密,如果能成功解密,则说明证书确实是由这个网站发布的,因为只有这个网站知道他自己的私钥(如果他的私钥没有泄露的话)。

        在非对称加密算法中,最出众的莫过于 RSA 算法,关于 RSA 算法的数学细节,可以参考阮一峰的《RSA算法原理(一)》《RSA算法原理(二)》这两篇博客,强烈推荐。

        当然,如果只是简单的对数字签名进行校验的话,还不能完全保证这个证书确实就是网站所有,黑客完全可以在中间进行劫持,使用自己的私钥对网站身份信息进行加密,并将证书中的公钥替换成自己的公钥,这样浏览器同样可以解密数字签名,签名中身份信息也是完全合法的。这就好比那些地摊上伪造公章的小贩,他们可以伪造出和真正的公章完全一样的出来以假乱真。为了解决这个问题,信息安全的专家们引入了 CA 这个东西,所谓 CA ,全称为 Certificate Authority ,翻译成中文就是证书授权中心,它是专门负责管理和签发证书的第三方机构。因为证书颁发机构关系到所有互联网通信的身份安全,因此一定要是一个非常权威的机构,像 GeoTrust、GlobalSign 等等,这里有一份常见的 CA 清单。如果一个网站需要支持 HTTPS ,它就要一份证书来证明自己的身份,而这个证书必须从 CA 机构申请,大多数情况下申请数字证书的价格都不菲,不过也有一些免费的证书供个人使用,像最近比较火的 Let's Encrypt 。从安全性的角度来说,免费的和收费的证书没有任何区别,都可以为你的网站提供足够高的安全性,唯一的区别在于如果你从权威机构购买了付费的证书,一旦由于证书安全问题导致经济损失,可以获得一笔巨额的赔偿。

     如果用户想得到一份属于自己的证书,他应先向 CA 提出申请。在 CA 判明申请者的身份后,便为他分配一个公钥,并且 CA 将该公钥与申请者的身份信息绑在一起,并为之签字后,便形成证书发给申请者。如果一个用户想鉴别另一个证书的真伪,他就用 CA 的公钥对那个证书上的签字进行验证,一旦验证通过,该证书就被认为是有效的。通过这种方式,黑客就不能简单的修改证书中的公钥了,因为现在公钥有了 CA 的数字签名,由 CA 来证明公钥的有效性,不能轻易被篡改,而黑客自己的公钥是很难被 CA 认可的,所以我们无需担心证书被篡改的问题了。

下图显示了证书的申请流程(图片来自刘坤的技术博客):

     

CA 证书可以具有层级结构,它建立了自上而下的信任链,下级 CA 信任上级 CA ,下级 CA 由上级 CA 颁发证书并认证。 譬如 Google 的证书链如下图所示:

 

      可以看出:google.com.hk 的 SSL 证书由 Google Internet Authority G2 这个 CA 来验证,而 Google Internet Authority G2 由 GeoTrust Global CA 来验证,GeoTrust Global CA 由 Equifax Secure Certificate Authority 来验证。这个最顶部的证书,我们称之为根证书(root certificate),那么谁来验证根证书呢?答案是它自己,根证书自己证明自己,换句话来说也就是根证书是不需要证明的。浏览器在验证证书时,从根证书开始,沿着证书链的路径依次向下验证,根证书是整个证书链的安全之本,如果根证书被篡改,整个证书体系的安全将受到威胁。所以不要轻易的相信根证书,当下次你访问某个网站遇到提示说,请安装我们的根证书,它可以让你访问我们网站的体验更流畅通信更安全时,最好留个心眼。在安装之前,不妨看看这几篇博客:《12306的证书问题》《在线买火车票为什么要安装根证书?》

最后总结一下,其实上面说的这些,什么非对称加密,数字签名,CA 机构,根证书等等,其实都是 PKI 的核心概念。PKI(Public Key Infrastructure)中文称作公钥基础设施,它提供公钥加密和数字签名服务的系统或平台,方便管理密钥和证书,从而建立起一个安全的网络环境。而数字证书最常见的格式是 X.509 ,所以这种公钥基础设施又称之为 PKIX 。

版权声明:本文来源CSDN,感谢博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/keep12moving/article/details/98972759
站方申明:本站部分内容来自社区用户分享,若涉及侵权,请联系站方删除。
  • 发表于 2021-11-27 22:12:37
  • 阅读 ( 1456 )
  • 分类:算法

0 条评论

请先 登录 后评论

官方社群

GO教程

猜你喜欢