社区微信群开通啦,扫一扫抢先加入社区官方微信群
社区微信群
设计一个缓存系统,不得不考虑的问题就是:缓存穿透、缓存击穿与失效时的雪崩效应。
缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞。
有很多种方法可以有效地解决缓存穿透问题,最常见的是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。另外也有一个更为简单粗暴的方法(我们采用的就是这种),如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。
缓存雪崩是指在我们设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB瞬时压力过重导致雪崩。
缓存失效时的雪崩效应对底层系统的冲击非常可怕。大多数系统设计者考虑用加锁或者队列的方式保证缓存的单线程(进程)写,从而避免失效时大量的并发请求落到底层存储系统上。这里分享一个简单方案,就是将缓存失效时间分散开,比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
对于一些设置了过期时间的key,如果这些key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑一个问题:缓存被“击穿”的问题,这个和缓存雪崩的区别在于这里针对某一key缓存,前者则是很多key。
缓存在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
我们的目标是:尽量少的线程构建缓存(甚至是一个) + 数据一致性 + 较少的潜在危险,下面会介绍四种方法来解决这个问题:
这种解决方案思路比较简单,就是只让一个线程构建缓存,其他线程等待构建缓存的线程执行完,重新从缓存获取数据就可以了(如下图)
如果是单机,可以用synchronized或者lock来处理,如果是分布式环境可以用分布式锁就可以了(分布式锁,可以用memcache的add, redis的setnx, zookeeper的添加节点操作)。
下面是Tim yang博客的代码,是memcache的伪代码实现
if (memcache.get(key) == null) {
// 3 min timeout to avoid mutex holder crash
if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {
value = db.get(key);
memcache.set(key, value);
memcache.delete(key_mutex);
} else {
sleep(50);
retry();
}
}
如果换成redis,就是:
String get(String key) {
String value = redis.get(key);
if (value == null) {
if (redis.setnx(key_mutex, "1")) {
// 3 min timeout to avoid mutex holder crash
redis.expire(key_mutex, 3 * 60)
value = db.get(key);
redis.set(key, value);
redis.delete(key_mutex);
} else {
//其他线程休息50毫秒后重试
Thread.sleep(50);
get(key);
}
}
}
在value内部设置1个超时值(timeout1), timeout1比实际的memcache timeout(timeout2)小。当从cache读取到timeout1发现它已经过期时候,马上延长timeout1并重新设置到cache。然后再从数据库加载数据并设置到cache中。伪代码如下:
v = memcache.get(key);
if (v == null) {
if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {
value = db.get(key);
memcache.set(key, value);
memcache.delete(key_mutex);
} else {
sleep(50);
retry();
}
} else {
if (v.timeout <= now()) {
if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {
// extend the timeout for other threads
v.timeout += 3 * 60 * 1000;
memcache.set(key, v, KEY_TIMEOUT * 2);
// load the latest value from db
v = db.get(key);
v.timeout = KEY_TIMEOUT;
memcache.set(key, value, KEY_TIMEOUT * 2);
memcache.delete(key_mutex);
} else {
sleep(50);
retry();
}
}
}
这里的“永远不过期”包含两层意思:
1、从redis上看,确实没有设置过期时间,这就保证了,不会出现热点key过期问题,也就是“物理”不过期。
2、从功能上看,如果不过期,那不就成静态的了吗?所以我们把过期时间存在key对应的value里,如果发现要过期了,通过一个后台的异步线程进行缓存的构建,也就是“逻辑”过期
从实战看,这种方法对于性能非常友好,唯一不足的就是构建缓存时候,其余线程(非构建缓存的线程)可能访问的是老数据,但是对于一般的互联网功能来说这个还是可以忍受。
String get(final String key) {
V v = redis.get(key);
String value = v.getValue();
long timeout = v.getTimeout();
if (v.timeout <= System.currentTimeMillis()) {
// 异步更新后台异常执行
threadPool.execute(new Runnable() {
public void run() {
String keyMutex = "mutex:" + key;
if (redis.setnx(keyMutex, "1")) {
// 3 min timeout to avoid mutex holder crash
redis.expire(keyMutex, 3 * 60);
String dbValue = db.get(key);
redis.set(key, dbValue);
redis.delete(keyMutex);
}
}
});
}
return value;
}
之前在缓存雪崩那篇文章提到了netflix的hystrix,可以做资源的隔离保护主线程池,如果把这个应用到缓存的构建也未尝不可。
作为一个并发量较大的互联网应用,我们的目标有3个: 1、加快用户访问速度,提高用户体验。 2、降低后端负载,保证系统平稳。 3、保证数据“尽可能”及时更新(要不要完全一致,取决于业务,而不是技术。)
所以第二节中提到的四种方法,可以做如下比较,还是那就话:没有最好,只有最合适。
优点
1、思路简单
2、保证一致性
缺点
1、代码复杂度增大
2、存在死锁的风险
3、存在线程池阻塞的风险
优点
1、保证一致性
缺点
1、代码复杂度增大
2、存在死锁的风险
3、存在线程池阻塞的风险
优点
1、异步构建缓存,不会阻塞线程池
缺点
1、不保证一致性。
2、代码复杂度增大(每个value都要维护一个timekey)。
3、占用一定的内存空间(每个value都要维护一个timekey)。
优点
1、hystrix技术成熟,有效保证后端。
2、hystrix监控强大。
缺点
1、部分访问存在降级策略。
热点key + 过期时间 + 复杂的构建缓存过程 => mutex key问题 构建缓存一个线程做就可以了。 四种解决方案:没有最佳只有最合适。
出处:https://dwz.cn/E17vTJXl
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!