【我的架构师之路】- golang源码分析之channel的底层实现 - Go语言中文社区

【我的架构师之路】- golang源码分析之channel的底层实现


【转载请标明出处】https://blog.csdn.net/qq_25870633/article/details/83388952

接上篇文章 【我的区块链之路】- golang源码分析之select的底层实现 我这里因为面试的时候也有被问到过 channel的底层实现,所以就一并的去把 channel 啊,goroutine啊,go协程的调度器啊,interface啊,mutex啊,rwmutex啊,timer啊等等底层全部都去录了一遍。没办法啊,曾经我以为自己是个逆风尿三丈的耀眼王者,然而这段时间发现自己只是一只顺风尿湿鞋的不屈黑铁。。。

参考:

https://ninokop.github.io/

https://blog.csdn.net/nobugtodebug/article/details/45396507

https://studygolang.com/articles/10575?fr=sidebar

那么,我们这篇文章主要是讲channel的底层实现的。

首先,我们先看channel的实现是在哪里?在runtime包下面咯,路径为:./src/runtime/chan.go 文件中,其中主要的结构体为:

/**
定义了 channel 的结构体
*/
type hchan struct {
	qcount   uint           // total data in the queue   队列中的当前数据的个数
	dataqsiz uint           // size of the circular queue channel的大小
	buf      unsafe.Pointer // points to an array of dataqsiz elements  数据缓冲区,存放数据的环形数组
	elemsize uint16         // channel 中数据类型的大小 (单个元素的大小)
	closed   uint32         // 表示 channel 是否关闭的标识位
	elemtype *_type // element type  队列中的元素类型
    // send 和 recieve 的索引,用于实现环形数组队列
	sendx    uint   // send index    当前发送元素的索引
	recvx    uint   // receive index    当前接收元素的索引
	recvq    waitq  // list of recv waiters    接收等待队列;由 recv 行为(也就是 <-ch)阻塞在 channel 上的 goroutine 队列
	sendq    waitq  // list of send waiters    发送等待队列;由 send 行为 (也就是 ch<-) 阻塞在 channel 上的 goroutine 队列

	// lock protects all fields in hchan, as well as several
	// fields in sudogs blocked on this channel.
    // lock保护hchan中的所有字段,以及此通道上阻塞的sudoG中的几个字段。  
	//
	// Do not change another G's status while holding this lock
	// (in particular, do not ready a G), as this can deadlock
	// with stack shrinking.
    // 保持此锁定时不要更改另一个G的状态(特别是,没有准备好G),因为这可能会因堆栈收缩而死锁。
	lock mutex
}



/**
发送及接收队列的结构体
等待队列的链表实现
*/
type waitq struct {
	first *sudog
	last  *sudog
}

然后还有在 runtime包的 ./src/runtime/runtime2.go 中定义的 sudoG对应的结构体:

/**
对 G 的封装
*/
type sudog struct {
	// The following fields are protected by the hchan.lock of the
	// channel this sudog is blocking on. shrinkstack depends on
	// this for sudogs involved in channel ops.

	g          *g
	selectdone *uint32 // CAS to 1 to win select race (may point to stack)
	next       *sudog
	prev       *sudog
	elem       unsafe.Pointer // data element (may point to stack)

	// The following fields are never accessed concurrently.
	// For channels, waitlink is only accessed by g.
	// For semaphores, all fields (including the ones above)
	// are only accessed when holding a semaRoot lock.

	acquiretime int64
	releasetime int64
	ticket      uint32
	parent      *sudog // semaRoot binary tree
	waitlink    *sudog // g.waiting list or semaRoot
	waittail    *sudog // semaRoot
	c           *hchan // channel
}

有上述的结构体我们大致可以看出channel其实就是由一个环形数组实现的队列,用于存储消息元素;两个链表实现的 goroutine 等待队列,用于存储阻塞在 recv 和 send 操作上的 goroutine;一个互斥锁,用于各个属性变动的同步,只不过这个锁是一个轻量级锁。其中 recvq 是读操作阻塞在 channel 的 goroutine 列表,sendq 是写操作阻塞在 channel 的 goroutine 列表。列表的实现是 sudog,其实就是一个对 g 的结构的封装

和select类似,hchan其实只是channel的头部。头部后面的一段内存连续的数组将作为channel的缓冲区,即用于存放channel数据的环形队列。qcount 和 dataqsiz 分别描述了缓冲区当前使用量【len】和容量【cap】。若channel是无缓冲的,则size是0,就没有这个环形队列了。如图:

下面我们来看看实例化一个channel的实现:

make:

make 的过程还比较简单,需要注意一点的是当元素不含指针的时候,会将整个 hchan 分配成一个连续的空间。下面就是make创建channel的代码实现:

//go:linkname reflect_makechan reflect.makechan
func reflect_makechan(t *chantype, size int64) *hchan {
	return makechan(t, size)
}


/**
创建 chan
*/
func makechan(t *chantype, size int64) *hchan {
	elem := t.elem

	// compiler checks this but be safe.
	if elem.size >= 1<<16 {
		throw("makechan: invalid channel element type")
	}
	if hchanSize%maxAlign != 0 || elem.align > maxAlign {
		throw("makechan: bad alignment")
	}
	if size < 0 || int64(uintptr(size)) != size || (elem.size > 0 && uintptr(size) > (_MaxMem-hchanSize)/elem.size) {
		panic(plainError("makechan: size out of range"))
	}

	var c *hchan
	if elem.kind&kindNoPointers != 0 || size == 0 {
		// Allocate memory in one call.
		// Hchan does not contain pointers interesting for GC in this case:
		// buf points into the same allocation, elemtype is persistent.
		// SudoG's are referenced from their owning thread so they can't be collected.
		// TODO(dvyukov,rlh): Rethink when collector can move allocated objects.
		c = (*hchan)(mallocgc(hchanSize+uintptr(size)*elem.size, nil, true))
		if size > 0 && elem.size != 0 {
			c.buf = add(unsafe.Pointer(c), hchanSize)
		} else {
			// race detector uses this location for synchronization
			// Also prevents us from pointing beyond the allocation (see issue 9401).
			c.buf = unsafe.Pointer(c)
		}
	} else {
		c = new(hchan)
		c.buf = newarray(elem, int(size))
	}
	c.elemsize = uint16(elem.size)
	c.elemtype = elem
	c.dataqsiz = uint(size)

	if debugChan {
		print("makechan: chan=", c, "; elemsize=", elem.size, "; elemalg=", elem.alg, "; dataqsiz=", size, "n")
	}
	return c
}

可以看出来和之前说的select一样用了 //go:linkname 技巧,把函数关联到了 reflect包中的对应函数上了,这样纸就使用反射区出发整个make的入口。骚微过一下reflect包中真正make(chan type, int) 的函数吧

// MakeChan creates a new channel with the specified type and buffer size.
func MakeChan(typ Type, buffer int) Value {
	if typ.Kind() != Chan {
		panic("reflect.MakeChan of non-chan type")
	}
	if buffer < 0 {
		panic("reflect.MakeChan: negative buffer size")
	}
	if typ.ChanDir() != BothDir {
		panic("reflect.MakeChan: unidirectional channel type")
	}
	ch := makechan(typ.(*rtype), uint64(buffer))
	return Value{typ.common(), ch, flag(Chan)}
}

// 这个才是被runtime中 用 //go:linkname 链接的函数
func makechan(typ *rtype, size uint64) (ch unsafe.Pointer)

劫争上面继续说,make中做了什么:首先两个 if 主要是一些异常情况的判断,第三个 if 也很明显,判断 size 大小是否小于 0 或者过大。int64(uintptr(size)) != size 这句也是判断 size 是否为负。

然后接着判断,如果channel中元素类型不为指针或者channel为无缓冲通道那么就将其分配在连续的内存区域。【使用 mallocgc 函数进行分配内存空间】顺便看下 mallocgc 函数(这个函数在select那章其实也用到的)的代码吧:

// Allocate an object of size bytes.
// Small objects are allocated from the per-P cache's free lists.
// Large objects (> 32 kB) are allocated straight from the heap.

/**
分配大小为字节的对象。
从每个P缓存的空闲列表中分配小对象。
大型对象(> 32 kB)直接从堆中分配。
*/
func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
	if gcphase == _GCmarktermination {
		throw("mallocgc called with gcphase == _GCmarktermination")
	}

	if size == 0 {
		return unsafe.Pointer(&zerobase)
	}

	if debug.sbrk != 0 {
		align := uintptr(16)
		if typ != nil {
			align = uintptr(typ.align)
		}
		return persistentalloc(size, align, &memstats.other_sys)
	}

	// assistG is the G to charge for this allocation, or nil if
	// GC is not currently active.
	var assistG *g
	if gcBlackenEnabled != 0 {
		// Charge the current user G for this allocation.
		assistG = getg()
		if assistG.m.curg != nil {
			assistG = assistG.m.curg
		}
		// Charge the allocation against the G. We'll account
		// for internal fragmentation at the end of mallocgc.
		assistG.gcAssistBytes -= int64(size)

		if assistG.gcAssistBytes < 0 {
			// This G is in debt. Assist the GC to correct
			// this before allocating. This must happen
			// before disabling preemption.
			gcAssistAlloc(assistG)
		}
	}

	// Set mp.mallocing to keep from being preempted by GC.
	mp := acquirem()
	if mp.mallocing != 0 {
		throw("malloc deadlock")
	}
	if mp.gsignal == getg() {
		throw("malloc during signal")
	}
	mp.mallocing = 1

	shouldhelpgc := false
	dataSize := size
	c := gomcache()
	var x unsafe.Pointer
	noscan := typ == nil || typ.kind&kindNoPointers != 0
	if size <= maxSmallSize {
		if noscan && size < maxTinySize {
			// Tiny allocator.
			//
			// Tiny allocator combines several tiny allocation requests
			// into a single memory block. The resulting memory block
			// is freed when all subobjects are unreachable. The subobjects
			// must be noscan (don't have pointers), this ensures that
			// the amount of potentially wasted memory is bounded.
			//
			// Size of the memory block used for combining (maxTinySize) is tunable.
			// Current setting is 16 bytes, which relates to 2x worst case memory
			// wastage (when all but one subobjects are unreachable).
			// 8 bytes would result in no wastage at all, but provides less
			// opportunities for combining.
			// 32 bytes provides more opportunities for combining,
			// but can lead to 4x worst case wastage.
			// The best case winning is 8x regardless of block size.
			//
			// Objects obtained from tiny allocator must not be freed explicitly.
			// So when an object will be freed explicitly, we ensure that
			// its size >= maxTinySize.
			//
			// SetFinalizer has a special case for objects potentially coming
			// from tiny allocator, it such case it allows to set finalizers
			// for an inner byte of a memory block.
			//
			// The main targets of tiny allocator are small strings and
			// standalone escaping variables. On a json benchmark
			// the allocator reduces number of allocations by ~12% and
			// reduces heap size by ~20%.
			off := c.tinyoffset
			// Align tiny pointer for required (conservative) alignment.
			if size&7 == 0 {
				off = round(off, 8)
			} else if size&3 == 0 {
				off = round(off, 4)
			} else if size&1 == 0 {
				off = round(off, 2)
			}
			if off+size <= maxTinySize && c.tiny != 0 {
				// The object fits into existing tiny block.
				x = unsafe.Pointer(c.tiny + off)
				c.tinyoffset = off + size
				c.local_tinyallocs++
				mp.mallocing = 0
				releasem(mp)
				return x
			}
			// Allocate a new maxTinySize block.
			span := c.alloc[tinySpanClass]
			v := nextFreeFast(span)
			if v == 0 {
				v, _, shouldhelpgc = c.nextFree(tinySpanClass)
			}
			x = unsafe.Pointer(v)
			(*[2]uint64)(x)[0] = 0
			(*[2]uint64)(x)[1] = 0
			// See if we need to replace the existing tiny block with the new one
			// based on amount of remaining free space.
			if size < c.tinyoffset || c.tiny == 0 {
				c.tiny = uintptr(x)
				c.tinyoffset = size
			}
			size = maxTinySize
		} else {
			var sizeclass uint8
			if size <= smallSizeMax-8 {
				sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]
			} else {
				sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]
			}
			size = uintptr(class_to_size[sizeclass])
			spc := makeSpanClass(sizeclass, noscan)
			span := c.alloc[spc]
			v := nextFreeFast(span)
			if v == 0 {
				v, span, shouldhelpgc = c.nextFree(spc)
			}
			x = unsafe.Pointer(v)
			if needzero && span.needzero != 0 {
				memclrNoHeapPointers(unsafe.Pointer(v), size)
			}
		}
	} else {
		var s *mspan
		shouldhelpgc = true
		systemstack(func() {
			s = largeAlloc(size, needzero, noscan)
		})
		s.freeindex = 1
		s.allocCount = 1
		x = unsafe.Pointer(s.base())
		size = s.elemsize
	}

	var scanSize uintptr
	if !noscan {
		// If allocating a defer+arg block, now that we've picked a malloc size
		// large enough to hold everything, cut the "asked for" size down to
		// just the defer header, so that the GC bitmap will record the arg block
		// as containing nothing at all (as if it were unused space at the end of
		// a malloc block caused by size rounding).
		// The defer arg areas are scanned as part of scanstack.
		if typ == deferType {
			dataSize = unsafe.Sizeof(_defer{})
		}
		heapBitsSetType(uintptr(x), size, dataSize, typ)
		if dataSize > typ.size {
			// Array allocation. If there are any
			// pointers, GC has to scan to the last
			// element.
			if typ.ptrdata != 0 {
				scanSize = dataSize - typ.size + typ.ptrdata
			}
		} else {
			scanSize = typ.ptrdata
		}
		c.local_scan += scanSize
	}

	// Ensure that the stores above that initialize x to
	// type-safe memory and set the heap bits occur before
	// the caller can make x observable to the garbage
	// collector. Otherwise, on weakly ordered machines,
	// the garbage collector could follow a pointer to x,
	// but see uninitialized memory or stale heap bits.
	publicationBarrier()

	// Allocate black during GC.
	// All slots hold nil so no scanning is needed.
	// This may be racing with GC so do it atomically if there can be
	// a race marking the bit.
	if gcphase != _GCoff {
		gcmarknewobject(uintptr(x), size, scanSize)
	}

	if raceenabled {
		racemalloc(x, size)
	}

	if msanenabled {
		msanmalloc(x, size)
	}

	mp.mallocing = 0
	releasem(mp)

	if debug.allocfreetrace != 0 {
		tracealloc(x, size, typ)
	}

	if rate := MemProfileRate; rate > 0 {
		if size < uintptr(rate) && int32(size) < c.next_sample {
			c.next_sample -= int32(size)
		} else {
			mp := acquirem()
			profilealloc(mp, x, size)
			releasem(mp)
		}
	}

	if assistG != nil {
		// Account for internal fragmentation in the assist
		// debt now that we know it.
		assistG.gcAssistBytes -= int64(size - dataSize)
	}

	if shouldhelpgc {
		if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
			gcStart(gcBackgroundMode, t)
		}
	}

	return x
}

否则,在创建chan需要知道数据类型和缓冲区大小。channel 和 channel.buf 是分别进行分配的。对应上面的结构图 newarray 将生成这个环形队列。之所以要分开指针类型缓冲区主要是为了区分gc操作,需要将它设置为flagNoScan。并且指针大小固定,可以跟hchan头部一起分配内存,不需要先new(hchan)newarry

我们再看下 newarray函数:

func newarray(typ *_type, n int) unsafe.Pointer {
	if n < 0 || uintptr(n) > maxSliceCap(typ.size) {
		panic(plainError("runtime: allocation size out of range"))
	}
	return mallocgc(typ.size*uintptr(n), typ, true)
}

可以看出来,其实newarray函数底层也是调了 mallocgc 函数来分配内存空间的

总结:make chan 的过程是在堆上进行分配,返回是一个 hchan 的指针

声明但不make初始化的chan是nil chan。读写nil chan会阻塞,关闭nil chan会panic。

chan的读写:

从实现中可见读写chan都要lock,这跟读写共享内存一样都有lock的开销

数据在chan中的传递方向从chansend开始从入参最终写入recvq中的goroutine的数据域,这中间如果发生阻塞可能先写入sendq中goroutine的数据域等待中转

从gopark返回后sudog对象可重用

首先,我们来看下对应chan的读写函数的定义:

sned:

// entry point for c <- x from compiled code
//go:nosplit
func chansend1(c *hchan, elem unsafe.Pointer) {
	chansend(c, elem, true, getcallerpc(unsafe.Pointer(&c)))
}

/*
 * generic single channel send/recv
 * If block is not nil,
 * then the protocol will not
 * sleep but return if it could
 * not complete.
 *
 * sleep can wake up with g.param == nil
 * when a channel involved in the sleep has
 * been closed.  it is easiest to loop and re-run
 * the operation; we'll see that it's now closed.
 * 通用单通道发送/接收
 * 如果阻塞不是nil,则将不会休眠,但如果无法完成则返回。
 * 当睡眠中涉及的通道关闭时,睡眠可以通过g.param == nil唤醒。 最简单的循环和重新运行操作; 我们会 
 * 看到它现在已经关闭了。   
 */
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

    // 当 channel 未初始化或为 nil 时,向其中发送数据将会永久阻塞
	if c == nil {
		if !block {
			return false
		}
        
        // gopark 会使当前 goroutine 休眠,并通过 unlockf 唤醒,但是此时传入的 unlockf 为 nil, 因此,goroutine 会一直休眠
		gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
		throw("unreachable")
	}

	if debugChan {
		print("chansend: chan=", c, "n")
	}

	if raceenabled {
		racereadpc(unsafe.Pointer(c), callerpc, funcPC(chansend))
	}

	// Fast path: check for failed non-blocking operation without acquiring the lock.
	//
	// After observing that the channel is not closed, we observe that the channel is
	// not ready for sending. Each of these observations is a single word-sized read
	// (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
	// Because a closed channel cannot transition from 'ready for sending' to
	// 'not ready for sending', even if the channel is closed between the two observations,
	// they imply a moment between the two when the channel was both not yet closed
	// and not ready for sending. We behave as if we observed the channel at that moment,
	// and report that the send cannot proceed.
	//
	// It is okay if the reads are reordered here: if we observe that the channel is not
	// ready for sending and then observe that it is not closed, that implies that the
	// channel wasn't closed during the first observation.
	if !block && c.closed == 0 && ((c.dataqsiz == 0 && c.recvq.first == nil) ||
		(c.dataqsiz > 0 && c.qcount == c.dataqsiz)) {
		return false
	}

	var t0 int64
	if blockprofilerate > 0 {
		t0 = cputicks()
	}
    
     // 获取同步锁
	lock(&c.lock)
    
    // 向已经关闭的 channel 发送消息会产生 panic
	if c.closed != 0 {
		unlock(&c.lock)
		panic(plainError("send on closed channel"))
	}
    
    // CASE1: 当有 goroutine 在 recv 队列上等待时,跳过缓存队列,将消息直接发给 reciever goroutine
	if sg := c.recvq.dequeue(); sg != nil {
		// Found a waiting receiver. We pass the value we want to send
		// directly to the receiver, bypassing the channel buffer (if any).
        // 找到了等待receiver。 我们将要发送的值直接传递给receiver,绕过通道缓冲区(如果有的话)。
		send(c, sg, ep, func() { unlock(&c.lock) }, 3)
		return true
	}
    
    // CASE2: 缓存队列未满,则将消息复制到缓存队列上
	if c.qcount < c.dataqsiz {
		// Space is available in the channel buffer. Enqueue the element to send.
		qp := chanbuf(c, c.sendx)
		if raceenabled {
			raceacquire(qp)
			racerelease(qp)
		}
		typedmemmove(c.elemtype, qp, ep)
		c.sendx++
		if c.sendx == c.dataqsiz {
			c.sendx = 0
		}
		c.qcount++
		unlock(&c.lock)
		return true
	}

	if !block {
		unlock(&c.lock)
		return false
	}
    
    // CASE3: 缓存队列已满,将goroutine 加入 send 队列
    // 初始化 sudog
	// Block on the channel. Some receiver will complete our operation for us.
	gp := getg()
	mysg := acquireSudog()
	mysg.releasetime = 0
	if t0 != 0 {
		mysg.releasetime = -1
	}
	// No stack splits between assigning elem and enqueuing mysg
	// on gp.waiting where copystack can find it.
	mysg.elem = ep
	mysg.waitlink = nil
	mysg.g = gp
	mysg.selectdone = nil
	mysg.c = c
	gp.waiting = mysg
	gp.param = nil

    // 加入队列
	c.sendq.enqueue(mysg)
    // 休眠
	goparkunlock(&c.lock, "chan send", traceEvGoBlockSend, 3)
    
    // 唤醒 goroutine
	// someone woke us up.
	if mysg != gp.waiting {
		throw("G waiting list is corrupted")
	}
	gp.waiting = nil
	if gp.param == nil {
		if c.closed == 0 {
			throw("chansend: spurious wakeup")
		}
		panic(plainError("send on closed channel"))
	}
	gp.param = nil
	if mysg.releasetime > 0 {
		blockevent(mysg.releasetime-t0, 2)
	}
	mysg.c = nil
	releaseSudog(mysg)
	return true
}


// send processes a send operation on an empty channel c.
// The value ep sent by the sender is copied to the receiver sg.
// The receiver is then woken up to go on its merry way.
// Channel c must be empty and locked.  send unlocks c with unlockf.
// sg must already be dequeued from c.
// ep must be non-nil and point to the heap or the caller's stack.
func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
	if raceenabled {
		if c.dataqsiz == 0 {
			racesync(c, sg)
		} else {
			// Pretend we go through the buffer, even though
			// we copy directly. Note that we need to increment
			// the head/tail locations only when raceenabled.
			qp := chanbuf(c, c.recvx)
			raceacquire(qp)
			racerelease(qp)
			raceacquireg(sg.g, qp)
			racereleaseg(sg.g, qp)
			c.recvx++
			if c.recvx == c.dataqsiz {
				c.recvx = 0
			}
			c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
		}
	}
	if sg.elem != nil {
		sendDirect(c.elemtype, sg, ep)
		sg.elem = nil
	}
	gp := sg.g
	unlockf()
	gp.param = unsafe.Pointer(sg)
	if sg.releasetime != 0 {
		sg.releasetime = cputicks()
	}
	goready(gp, skip+1)
}

send 有以下四种情况:【都是对不为nil的chan的情况】

  • 向已经close的chan写数据,抛panic。
  • 有 goroutine 阻塞在 channel recv 队列上,此时缓存队列( hchan.buf)为空(即缓冲区内无元素),直接将消息发送给 reciever goroutine,只产生一次复制
  • 当 channel 缓存队列( hchan.buf )有剩余空间时,将数据放到队列里,等待接收,接收后总共产生两次复制
  • 当 channel 缓存队列( hchan.buf )已满时,将当前 goroutine 加入 send 队列并阻塞。

【第一种情况】:向已经close的chan写数据,会抛panic

if c.closed != 0 {
		unlock(&c.lock)
		panic(plainError("send on closed channel"))
}

【第二种情况】:从当前 channel 的等待队列中取出等待的 goroutine,然后调用 send。goready 负责唤醒 goroutine

if sg := c.recvq.dequeue(); sg != nil {
		// Found a waiting receiver. We pass the value we want to send
		// directly to the receiver, bypassing the channel buffer (if any).
		send(c, sg, ep, func() { unlock(&c.lock) }, 3)
		return true
}


// 看send 部分逻辑

func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
	if raceenabled {
		if c.dataqsiz == 0 {
			racesync(c, sg)
		} else {
			// Pretend we go through the buffer, even though
			// we copy directly. Note that we need to increment
			// the head/tail locations only when raceenabled.
			qp := chanbuf(c, c.recvx)
			raceacquire(qp)
			racerelease(qp)
			raceacquireg(sg.g, qp)
			racereleaseg(sg.g, qp)
			c.recvx++
			if c.recvx == c.dataqsiz {
				c.recvx = 0
			}
			c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
		}
	}
	if sg.elem != nil {
		sendDirect(c.elemtype, sg, ep)
		sg.elem = nil
	}
	gp := sg.g
	unlockf()
	gp.param = unsafe.Pointer(sg)
	if sg.releasetime != 0 {
		sg.releasetime = cputicks()
	}
	goready(gp, skip+1)
}

【第三种情况】:通过比较 qcount 和 dataqsiz 来判断 hchan.buf 是否还有可用空间。除此之后还需要调整一下 sendx 和 qcount

if c.qcount < c.dataqsiz {
		// Space is available in the channel buffer. Enqueue the element to send.
		qp := chanbuf(c, c.sendx)
		if raceenabled {
			raceacquire(qp)
			racerelease(qp)
		}
		typedmemmove(c.elemtype, qp, ep)
		c.sendx++
		if c.sendx == c.dataqsiz {
			c.sendx = 0
		}
		c.qcount++
		unlock(&c.lock)
		return true
}

【第四种情况】:当 channel 缓存队列( hchan.buf )已满时,将当前 goroutine 加入 send 队列并阻塞。

// Block on the channel. Some receiver will complete our operation for us.
	gp := getg()
	mysg := acquireSudog()
	mysg.releasetime = 0
	if t0 != 0 {
		mysg.releasetime = -1
	}
	// No stack splits between assigning elem and enqueuing mysg
	// on gp.waiting where copystack can find it.
    // 一些初始化工作
	mysg.elem = ep
	mysg.waitlink = nil
	mysg.g = gp
	mysg.selectdone = nil
	mysg.c = c
	gp.waiting = mysg
	gp.param = nil
	c.sendq.enqueue(mysg)   // 当前 goroutine 如等待队列
	goparkunlock(&c.lock, "chan send", traceEvGoBlockSend, 3)  //休眠

receive:

// entry points for <- c from compiled code
//go:nosplit
func chanrecv1(c *hchan, elem unsafe.Pointer) {
	chanrecv(c, elem, true)
}

//go:nosplit
func chanrecv2(c *hchan, elem unsafe.Pointer) (received bool) {
	_, received = chanrecv(c, elem, true)
	return
}

// chanrecv receives on channel c and writes the received data to ep.
// ep may be nil, in which case received data is ignored.
// If block == false and no elements are available, returns (false, false).
// Otherwise, if c is closed, zeros *ep and returns (true, false).
// Otherwise, fills in *ep with an element and returns (true, true).
// A non-nil ep must point to the heap or the caller's stack.
func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {
	// raceenabled: don't need to check ep, as it is always on the stack
	// or is new memory allocated by reflect.

	if debugChan {
		print("chanrecv: chan=", c, "n")
	}
    
     // 从 nil 的 channel 中接收消息,永久阻塞
	if c == nil {
		if !block {
			return
		}
		gopark(nil, nil, "chan receive (nil chan)", traceEvGoStop, 2)
		throw("unreachable")
	}

	// Fast path: check for failed non-blocking operation without acquiring the lock.
	//
	// After observing that the channel is not ready for receiving, we observe that the
	// channel is not closed. Each of these observations is a single word-sized read
	// (first c.sendq.first or c.qcount, and second c.closed).
	// Because a channel cannot be reopened, the later observation of the channel
	// being not closed implies that it was also not closed at the moment of the
	// first observation. We behave as if we observed the channel at that moment
	// and report that the receive cannot proceed.
	//
	// The order of operations is important here: reversing the operations can lead to
	// incorrect behavior when racing with a close.
	if !block && (c.dataqsiz == 0 && c.sendq.first == nil ||
		c.dataqsiz > 0 && atomic.Loaduint(&c.qcount) == 0) &&
		atomic.Load(&c.closed) == 0 {
		return
	}

	var t0 int64
	if blockprofilerate > 0 {
		t0 = cputicks()
	}

	lock(&c.lock)
    
    // CASE1: 从已经 close 且为空的 channel recv 数据,返回空值
	if c.closed != 0 && c.qcount == 0 {
		if raceenabled {
			raceacquire(unsafe.Pointer(c))
		}
		unlock(&c.lock)
		if ep != nil {
			typedmemclr(c.elemtype, ep)
		}
		return true, false
	}
    
    // CASE2: send 队列不为空
    // CASE2.a: 缓存队列为空,直接从 sender recv 元素
    // CASE2.b: 缓存队列不为空,此时只有可能是缓存队列已满,从队列头取出元素,
    //并唤醒 sender 将元素写入缓存队列尾部。由于为环形队列,因此,队列满时只需要将队列头复制给 reciever,
    //同时将 sender 元素复制到该位置,并移动队列头尾索引,不需要移动队列元素
	if sg := c.sendq.dequeue(); sg != nil {
		// Found a waiting sender. If buffer is size 0, receive value
		// directly from sender. Otherwise, receive from head of queue
		// and add sender's value to the tail of the queue (both map to
		// the same buffer slot because the queue is full).
		recv(c, sg, ep, func() { unlock(&c.lock) }, 3)
		return true, true
	}
    
    // CASE3: 缓存队列不为空,直接从队列取元素,移动头索引
	if c.qcount > 0 {
		// Receive directly from queue
		qp := chanbuf(c, c.recvx)
		if raceenabled {
			raceacquire(qp)
			racerelease(qp)
		}
		if ep != nil {
			typedmemmove(c.elemtype, ep, qp)
		}
		typedmemclr(c.elemtype, qp)
		c.recvx++
		if c.recvx == c.dataqsiz {
			c.recvx = 0
		}
		c.qcount--
		unlock(&c.lock)
		return true, true
	}

	if !block {
		unlock(&c.lock)
		return false, false
	}
    
    // CASE4: 缓存队列为空,将 goroutine 加入 recv 队列,并阻塞
	// no sender available: block on this channel.
	gp := getg()
	mysg := acquireSudog()
	mysg.releasetime = 0
	if t0 != 0 {
		mysg.releasetime = -1
	}
	// No stack splits between assigning elem and enqueuing mysg
	// on gp.waiting where copystack can find it.
	mysg.elem = ep
	mysg.waitlink = nil
	gp.waiting = mysg
	mysg.g = gp
	mysg.selectdone = nil
	mysg.c = c
	gp.param = nil
	c.recvq.enqueue(mysg)
	goparkunlock(&c.lock, "chan receive", traceEvGoBlockRecv, 3)

	// someone woke us up
	if mysg != gp.waiting {
		throw("G waiting list is corrupted")
	}
	gp.waiting = nil
	if mysg.releasetime > 0 {
		blockevent(mysg.releasetime-t0, 2)
	}
	closed := gp.param == nil
	gp.param = nil
	mysg.c = nil
	releaseSudog(mysg)
	return true, !closed
}

// recv processes a receive operation on a full channel c.
// There are 2 parts:
// 1) The value sent by the sender sg is put into the channel
//    and the sender is woken up to go on its merry way.
// 2) The value received by the receiver (the current G) is
//    written to ep.
// For synchronous channels, both values are the same.
// For asynchronous channels, the receiver gets its data from
// the channel buffer and the sender's data is put in the
// channel buffer.
// Channel c must be full and locked. recv unlocks c with unlockf.
// sg must already be dequeued from c.
// A non-nil ep must point to the heap or the caller's stack.
func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
	if c.dataqsiz == 0 {
		if raceenabled {
			racesync(c, sg)
		}
		if ep != nil {
			// copy data from sender
			recvDirect(c.elemtype, sg, ep)
		}
	} else {
		// Queue is full. Take the item at the
		// head of the queue. Make the sender enqueue
		// its item at the tail of the queue. Since the
		// queue is full, those are both the same slot.
		qp := chanbuf(c, c.recvx)
		if raceenabled {
			raceacquire(qp)
			racerelease(qp)
			raceacquireg(sg.g, qp)
			racereleaseg(sg.g, qp)
		}
		// copy data from queue to receiver
		if ep != nil {
			typedmemmove(c.elemtype, ep, qp)
		}
		// copy data from sender to queue
		typedmemmove(c.elemtype, qp, sg.elem)
		c.recvx++
		if c.recvx == c.dataqsiz {
			c.recvx = 0
		}
		c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
	}
	sg.elem = nil
	gp := sg.g
	unlockf()
	gp.param = unsafe.Pointer(sg)
	if sg.releasetime != 0 {
		sg.releasetime = cputicks()
	}
	goready(gp, skip+1)
}

receive 有以下四种情况:【都是对不为nil的chan的情况】

  •  从已经 close 且为空的 channel recv 数据,返回空值
  • 当 send 队列不为空,分两种情况:【一】缓存队列为空,直接从 send 队列的sender中接收数据 元素;【二】缓存队列不为空,此时只有可能是缓存队列已满,从队列头取出元素,并唤醒 sender 将元素写入缓存队列尾部。由于为环形队列,因此,队列满时只需要将队列头复制给 reciever,同时将 sender 元素复制到该位置,并移动队列头尾索引,不需要移动队列元素。【这就是为什么使用环形队列的原因】
  • 缓存队列不为空,直接从队列取队头元素,移动头索引。
  • 缓存队列为空,将 goroutine 加入 recv 队列,并阻塞。

【第一种情况】:从 closed channel 接收数据,如果 channel 中还有数据,接着走下面的流程。如果已经没有数据了,则返回默认值。使用 ok-idiom 方式读取的时候,第二个参数返回 false。

if c.closed != 0 && c.qcount == 0 {
		if raceenabled {
			raceacquire(unsafe.Pointer(c))
		}
		unlock(&c.lock)
		if ep != nil {
			typedmemclr(c.elemtype, ep)
		}
		return true, false
}

【第二种情况】:当前有send goroutine 阻塞在 channel 上,直接调 recv函数【a】当缓存队列尾空时,直接从 send 队列的sender中接收数据 元素。【b】缓存队列不为空,此时只有可能是缓存队列已满,从队列头取出元素,并唤醒 sender 将元素写入缓存队列尾部。同时更改队列头索引。

if sg := c.sendq.dequeue(); sg != nil {
		// Found a waiting sender. If buffer is size 0, receive value
		// directly from sender. Otherwise, receive from head of queue
		// and add sender's value to the tail of the queue (both map to
		// the same buffer slot because the queue is full).
		recv(c, sg, ep, func() { unlock(&c.lock) }, 3)
		return true, true
}
func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
	if c.dataqsiz == 0 {
		if raceenabled {
			racesync(c, sg)
		}
		if ep != nil {
			// copy data from sender
			recvDirect(c.elemtype, sg, ep)
		}
	} else {
		// Queue is full. Take the item at the
		// head of the queue. Make the sender enqueue
		// its item at the tail of the queue. Since the
		// queue is full, those are both the same slot.
		qp := chanbuf(c, c.recvx)
		if raceenabled {
			raceacquire(qp)
			racerelease(qp)
			raceacquireg(sg.g, qp)
			racereleaseg(sg.g, qp)
		}
		// copy data from queue to receiver
		if ep != nil {
			typedmemmove(c.elemtype, ep, qp)
		}
		// copy data from sender to queue
		typedmemmove(c.elemtype, qp, sg.elem)
		c.recvx++
		if c.recvx == c.dataqsiz {
			c.recvx = 0
		}
		c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
	}
	sg.elem = nil
	gp := sg.g
	unlockf()
	gp.param = unsafe.Pointer(sg)
	if sg.releasetime != 0 {
		sg.releasetime = cputicks()
	}
	goready(gp, skip+1)
}

【第三种情况】:buf 中有可用数据。直接从队列取队头元素,移动头索引。

if c.qcount > 0 {
		// Receive directly from queue
		qp := chanbuf(c, c.recvx)
		if raceenabled {
			raceacquire(qp)
			racerelease(qp)
		}
		if ep != nil {
			typedmemmove(c.elemtype, ep, qp)
		}
		typedmemclr(c.elemtype, qp)
		c.recvx++
		if c.recvx == c.dataqsiz {
			c.recvx = 0
		}
		c.qcount--
		unlock(&c.lock)
		return true, true
}

【第四种情况】:buf 为空,将当前 goroutine 加入 recv 队列并阻塞。

// no sender available: block on this channel.
	gp := getg()
	mysg := acquireSudog()
	mysg.releasetime = 0
	if t0 != 0 {
		mysg.releasetime = -1
	}
	// No stack splits between assigning elem and enqueuing mysg
	// on gp.waiting where copystack can find it.
	mysg.elem = ep
	mysg.waitlink = nil
	gp.waiting = mysg
	mysg.g = gp
	mysg.selectdone = nil
	mysg.c = c
	gp.param = nil
	c.recvq.enqueue(mysg)
	goparkunlock(&c.lock, "chan receive", traceEvGoBlockRecv, 3)

close:

下面,我们来看看关闭通道具体的实现:

//go:linkname reflect_chanclose reflect.chanclose
func reflect_chanclose(c *hchan) {
	closechan(c)
}

func closechan(c *hchan) {
	if c == nil {
		panic(plainError("close of nil channel"))
	}

	lock(&c.lock)

    // 重复 close,产生 panic
	if c.closed != 0 {
		unlock(&c.lock)
		panic(plainError("close of closed channel"))
	}

	if raceenabled {
		callerpc := getcallerpc(unsafe.Pointer(&c))
		racewritepc(unsafe.Pointer(c), callerpc, funcPC(closechan))
		racerelease(unsafe.Pointer(c))
	}

	c.closed = 1

	var glist *g
    
    // 唤醒所有 reciever
	// release all readers
	for {
		sg := c.recvq.dequeue()
		if sg == nil {
			break
		}
		if sg.elem != nil {
			typedmemclr(c.elemtype, sg.elem)
			sg.elem = nil
		}
		if sg.releasetime != 0 {
			sg.releasetime = cputicks()
		}
		gp := sg.g
		gp.param = nil
		if raceenabled {
			raceacquireg(gp, unsafe.Pointer(c))
		}
		gp.schedlink.set(glist)
		glist = gp
	}
    
    // 唤醒所有 sender,并产生 panic
	// release all writers (they will panic)
	for {
		sg := c.sendq.dequeue()
		if sg == nil {
			break
		}
		sg.elem = nil
		if sg.releasetime != 0 {
			sg.releasetime = cputicks()
		}
		gp := sg.g
		gp.param = nil
		if raceenabled {
			raceacquireg(gp, unsafe.Pointer(c))
		}
		gp.schedlink.set(glist)
		glist = gp
	}
	unlock(&c.lock)
    
    // 唤醒所哟叜glist中的goroutine
	// Ready all Gs now that we've dropped the channel lock.
	for glist != nil {
		gp := glist
		glist = glist.schedlink.ptr()
		gp.schedlink = 0
		goready(gp, 3)
	}
}

close channel 的工作

  • 将 c.closed 设置为 1。
  • 唤醒 recvq 队列里面的阻塞 goroutine
  • 唤醒 sendq 队列里面的阻塞 goroutine

处理方式是分别遍历 recvq 和 sendq 队列,将所有的 goroutine 放到 glist 队列中,最后唤醒 glist 队列中的 goroutine

OK上述就是channel的源码分析,我们下面通过几张图来看一下chan的工作原理:

send的流程:

send的流程:

close的流程:

以上就是对 chan的底层操作原理及讲解。

问chan是否线程安全的呢?是线程安全的,因为其hchan结构汇总内置了mutex,且send 及 recv 及close 的操作中均会去 加锁/解锁 等动作。

到这里我们对chan的底层讲解就结束了!大家手下留情了~

 

版权声明:本文来源CSDN,感谢博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/qq_25870633/article/details/83388952
站方申明:本站部分内容来自社区用户分享,若涉及侵权,请联系站方删除。
  • 发表于 2019-08-25 16:29:57
  • 阅读 ( 2241 )
  • 分类:架构

0 条评论

请先 登录 后评论

官方社群

GO教程

猜你喜欢