mysql的innoDb引擎下的事务/事务的隔离级别/锁 - Go语言中文社区

mysql的innoDb引擎下的事务/事务的隔离级别/锁


在MySQL的众多存储引擎中,只有InnoDB支持事务,所有这里说的事务隔离级别指的是InnoDB下的事务隔离级别。

InnoDB引擎的锁机制:InnoDB支持事务,支持行锁和表锁用的比较多,Myisam不支持事务,只支持表锁。


事务:

一系列在共享数据库上执行的行为;事务的提出主要是为了解决并发情况下保持数据一致性的问题。

事务的特性:

原子性/隔离性/一致性/持久性

原子性:事务同时执行或者同时不执行;隔离性:事务之间不要影响;一致性:事务不能破坏关系数据的完整性以及业务逻辑上的一致性。持久性:在事务完成以后,该事务所对数据库所作的更改便持久的保存在数据库之中,并不会被回滚。即使出现了任何事故比如断电等,事务一旦提交,则持久化保存在数据库中。


实现事务的隔离性之4种隔离级别:

隔离性:多个事务并发访问时,事务之间是隔离的,一个事务不应该影响其它事务运行效果;

这指的是在并发环境中,当不同的事务同时操纵相同的数据时,每个事务都有各自的完整数据空间。由并发事务所做的修改必须与任何其他并发事务所做的修改隔离。

并行时可能出现的问题:对同一个数据,比如商品的库存数量。

1.a写和回滚是一个事物:a写,b读,a回滚:脏读,解决:a写入和回滚之间,不允许别的读-read commit b只能读提交过的

2.a两次读是一个事务:a读,b写,a读:a两次读取不一样,不可重复读,解决:a不允许连续读,或者两次读之间不允许写入;

Repeated Read-解决2

3.a写和读是一个事务:a写,b写,a读:a认为没改过来,解决:a写入和读之间,不允许别的写入;

Serialization-解决一切,包括1.2

解决方案:不同的隔离级别:

4级最低级鸟用没有:Read Uncommitted:最低的隔离级别,什么都不需要做,一个事务可以读到另一个事务未提交的结果。所有的并发事务问题都会发生。

3级,解决了问题1:Read Committed:只有在事务提交后,其更新结果才会被其他事务看见。可以解决脏读问题。

写的时候锁住对应的行,不让读。

2级解决了问题2:Repeated Read:在一个事务中,对于同一份数据的读取结果总是相同的,无论是否有其他事务对这份数据进行操作,以及这个事务是否提交。可以解决脏读、不可重复读。

锁,读的时候有索引,默认加锁方式是next-key锁;检索条件没有索引,更新数据会锁住整张表。一个间隙呗事务加了锁,其他事务是不可能在这个间隙插入记录的。

1级,解决了所有:Serialization:事务串行化执行,隔离级别最高,牺牲了系统的并发性。可以解决并发事务的所有问题。

读写都会锁住整个表。


然后是关于数据库的各种锁的总结:

1.共享锁(又称读锁)、排它锁(又称写锁):

InnoDB引擎的锁机制:InnoDB支持事务,支持行锁和表锁用的比较多,Myisam不支持事务,只支持表锁。

 

共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
排他锁(X):允许获得排他锁的事务更新数据,阻止其他事务取得相同数据集的共享读锁和排他写锁。
意向共享锁(IS):事务打算给数据行加行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁。
意向排他锁(IX):事务打算给数据行加行排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁。

 

说明:

 

1)共享锁和排他锁都是行锁,意向锁都是表锁,应用中我们只会使用到共享锁和排他锁,意向锁是mysql内部使用的,不需要用户干预。

 

2)对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB不会加任何锁,事务可以通过以下语句显示给记录集加共享锁或排他锁。
共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE。
排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE。

**对于锁定行记录后需要进行更新操作的应用,应该使用Select...For update 方式,获取排它锁。(用共享锁,在读了之后再写会阻塞,会导致死锁)

这里说说Myisam:MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁。

 

3)InnoDB行锁是通过给索引上的索引项加锁来实现的,因此InnoDB这种行锁实现特点意味着:只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁!

 

2.乐观锁、悲观锁:

悲观锁:悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定状态。悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系统不会修改数据)

1)使用悲观锁,我们必须关闭mysql数据库的自动提交属性,采用手动提交事务的方式,因为MySQL默认使用autocommit模式,也就是说,当你执行一个更新操作后,MySQL会立刻将结果进行提交。

2)需要注意的是,在事务中,只有SELECT ... FOR UPDATE 或LOCK IN SHARE MODE 同一笔数据时会等待其它事务结束后才执行,一般SELECT ... 则不受此影响。对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X)。

3)补充:MySQL select…for update的Row Lock与Table Lock

 

使用select…for update会把数据给锁住,不过我们需要注意一些锁的级别,MySQL InnoDB默认Row-Level Lock,所以只有「明确」地指定主键(或有索引的地方),MySQL 才会执行Row lock (只锁住被选取的数据) ,否则MySQL 将会执行Table Lock (将整个数据表单给锁住)。

乐观锁:

乐观锁( Optimistic Locking ) 相对悲观锁而言,乐观锁假设认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则让返回用户错误的信息,让用户决定如何去做(一般是回滚事务)。那么我们如何实现乐观锁呢,一般来说有以下2种方式:

 

1).使用数据版本(Version)记录机制实现,这是乐观锁最常用的一种实现方式。何谓数据版本?即为数据增加一个版本标识,一般是通过为数据库表增加一个数字类型的 “version” 字段来实现。当读取数据时,将version字段的值一同读出,数据每更新一次,对此version值加一。当我们提交更新的时候,判断数据库表对应记录的当前版本信息与第一次取出来的version值进行比对,如果数据库表当前版本号与第一次取出来的version值相等,则予以更新,否则认为是过期数据。

2).乐观锁定的第二种实现方式和第一种差不多,同样是在需要乐观锁控制的table中增加一个字段,名称无所谓,字段类型使用时间戳(timestamp), 和上面的version类似,也是在更新提交的时候检查当前数据库中数据的时间戳和自己更新前取到的时间戳进行对比,如果一致则OK,否则就是版本冲突。

 

 

总结:两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下,即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。但如果经常产生冲突,上层应用会不断的进行retry,这样反倒是降低了性能,所以这种情况下用悲观锁就比较合适。

  另外,高并发情况下个人认为乐观锁要好于悲观锁,因为悲观锁的机制使得各个线程等待时间过长,极其影响效率,乐观锁可以在一定程度上提高并发度。

 

 

3.表锁、行锁

 

表级锁(table-level locking):MyISAM和MEMORY存储引擎

行级锁(row-level locking) :InnoDB存储引擎

页面锁(page-level-locking):BDB存储引擎

 

表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。

行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。

页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。

 

之后看到了其他的知识,会继续补充。


https://www.cnblogs.com/cjsblog/p/8365921.html

回顾

在MySQL的众多存储引擎中,只有InnoDB支持事务,所有这里说的事务隔离级别指的是InnoDB下的事务隔离级别。

读未提交:一个事务可以读取到另一个事务未提交的修改。这会带来脏读、幻读、不可重复读问题。(基本没用)

读已提交:一个事务只能读取另一个事务已经提交的修改。其避免了脏读,但仍然存在不可重复读和幻读问题。

可重复读:同一个事务中多次读取相同的数据返回的结果是一样的。其避免了脏读和不可重复读问题,但幻读依然存在。

串行化:事务串行执行。避免了以上所有问题。

以上是SQL-92标准中定义的四种隔离级别。在MySQL中,默认的隔离级别是REPEATABLE-READ(可重复读),并且解决了幻读问题。简单的来说,mysql的默认隔离级别解决了脏读、幻读、不可重复读问题。

不可重复读重点在于update和delete,而幻读的重点在于insert。

在这里,我们只讨论可重复读。

知识储备

MVCC

译注:

  MVCC的全称是“多版本并发控制”。这项技术使得InnoDB的事务隔离级别下执行一致性读操作有了保证,换言之,就是为了查询一些正在被另一个事务更新的行,并且可以看到它们被更新之前的值。这是一个可以用来增强并发性的强大的技术,因为这样的一来的话查询就不用等待另一个事务释放锁。这项技术在数据库领域并不是普遍使用的。一些其它的数据库产品,以及mysql其它的存储引擎并不支持它。

 

说明

网上看到大量的文章讲到MVCC都是说给没一行增加两个隐藏的字段分别表示行的创建时间以及过期时间,它们存储的并不是时间,而是事务版本号。

事实上,这种说法并不准确,严格的来讲,InnoDB会给数据库中的每一行增加三个字段,它们分别是DB_TRX_ID、DB_ROLL_PTR、DB_ROW_ID。

但是,为了理解的方便,我们可以这样去理解,索引接下来的讲解中也还是用这两个字段的方式去理解。

 

增删查改

在InnoDB中,给每行增加两个隐藏字段来实现MVCC,一个用来记录数据行的创建时间,另一个用来记录行的过期时间(删除时间)。在实际操作中,存储的并不是时间,而是事务的版本号,每开启一个新事务,事务的版本号就会递增。

于是乎,默认的隔离级别(REPEATABLE READ)下,增删查改变成了这样:

  • SELECT
    • 读取创建版本小于或等于当前事务版本号,并且删除版本为空或大于当前事务版本号的记录。这样可以保证在读取之前记录是存在的。
  • INSERT
    • 将当前事务的版本号保存至行的创建版本号
  • UPDATE
    • 新插入一行,并以当前事务的版本号作为新行的创建版本号,同时将原记录行的删除版本号设置为当前事务版本号
  • DELETE
    • 将当前事务的版本号保存至行的删除版本号

 

快照读和当前读

快照读:读取的是快照版本,也就是历史版本

当前读:读取的是最新版本

普通的SELECT就是快照读,而UPDATE、DELETE、INSERT、SELECT ...  LOCK IN SHARE MODE、SELECT ... FOR UPDATE是当前读。

 

一致性非锁定读和锁定读

锁定读

  在一个事务中,标准的SELECT语句是不会加锁,但是有两种情况例外。SELECT ... LOCK IN SHARE MODE 和 SELECT ... FOR UPDATE。

  SELECT ... LOCK IN SHARE MODE

  给记录假设共享锁,这样一来的话,其它事务只能读不能修改,直到当前事务提交

  SELECT ... FOR UPDATE

  给索引记录加锁,这种情况下跟UPDATE的加锁情况是一样的

一致性非锁定读

  consistent read (一致性读),InnoDB用多版本来提供查询数据库在某个时间点的快照。如果隔离级别是REPEATABLE READ,那么在同一个事务中的所有一致性读都读的是事务中第一个这样的读读到的快照;如果是READ COMMITTED,那么一个事务中的每一个一致性读都会读到它自己刷新的快照版本。Consistent read(一致性读)是READ COMMITTED和REPEATABLE READ隔离级别下普通SELECT语句默认的模式。一致性读不会给它所访问的表加任何形式的锁,因此其它事务可以同时并发的修改它们。

 

悲观锁和乐观锁

悲观锁,正如它的名字那样,数据库总是认为别人会去修改它所要操作的数据,因此在数据库处理过程中将数据加锁。其实现依靠数据库底层。

乐观锁,如它的名字那样,总是认为别人不会去修改,只有在提交更新的时候去检查数据的状态。通常是给数据增加一个字段来标识数据的版本。

 

有这样三种锁我们需要了解

  • Record Locks(记录锁):在索引记录上加锁。
  • Gap Locks(间隙锁):在索引记录之间加锁,或者在第一个索引记录之前加锁,或者在最后一个索引记录之后加锁。
  • Next-Key Locks:在索引记录上加锁,并且在索引记录之前的间隙加锁。它相当于是Record Locks与Gap Locks的一个结合。

假设一个索引包含以下几个值:10,11,13,20。那么这个索引的next-key锁将会覆盖以下区间:

(negative infinity, 10]
(10, 11]
(11, 13]
(13, 20]
(20, positive infinity)

 

了解了以上概念之后,接下来具体就简单分析下REPEATABLE READ隔离级别是如何实现的

理论分析

之所以说是理论分析,是因为要是实际操作证明的话我也不知道怎么去证明,毕竟作者水平实在有限。

但是,这并不意味着我在此胡说八道,有官方文档为证。

这段话的大致意思是,在默认的隔离级别中,普通的SELECT用的是一致性读不加锁。而对于锁定读、UPDATE和DELETE,则需要加锁,至于加什么锁视情况而定。如果你对一个唯一索引使用了唯一的检索条件,那么只需锁定索引记录即可;如果你没有使用唯一索引作为检索条件,或者用到了索引范围扫描,那么将会使用间隙锁或者next-key锁以此来阻塞其它会话向这个范围内的间隙插入数据。

作者曾经有一个误区,认为按照前面说MVCC下的增删查改的行为就不会出现任何问题,也不会出现不可重复读和幻读。但其实是大错特错。

举个很简单的例子,假设事务A更新表中id=1的记录,而事务B也更新这条记录,并且B先提交,如果按照前面MVVC说的,事务A读取id=1的快照版本,那么它看不到B所提交的修改,此时如果直接更新的话就会覆盖B之前的修改,这就不对了,可能B和A修改的不是一个字段,但是这样一来,B的修改就丢失了,这是不允许的。

所以,在修改的时候一定不是快照读,而是当前读。

而且,前面也讲过只有普通的SELECT才是快照读,其它诸如UPDATE、删除都是当前读。修改的时候加锁这是必然的,同时为了防止幻读的出现还需要加间隙锁。

  • 一致性读保证了可用重复读
  • 间隙锁防止了幻读

回想一下

1、利用MVCC实现一致性非锁定读,这就有保证在同一个事务中多次读取相同的数据返回的结果是一样的,解决了不可重复读的问题

2、利用Gap Locks和Next-Key可以阻止其它事务在锁定区间内插入数据,因此解决了幻读问题

综上所述,默认隔离级别的实现依赖于MVCC和锁,再具体一点是一致性读和锁。

 

演示

上面四幅截图对比,可以看到由于id是主键,用id作为检索条件时只锁定那一个索引记录。接下来,看索引范围的例子

这两幅截图,可以看出,由于没有使用唯一索引作为检索条件,导致不光锁定了索引记录,还锁定了索引之间的间隙,应该是是使用了next-key锁。

 

 

 

 

 


版权声明:本文来源CSDN,感谢博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/u013755520/article/details/90404563
站方申明:本站部分内容来自社区用户分享,若涉及侵权,请联系站方删除。
  • 发表于 2020-03-01 21:44:01
  • 阅读 ( 1111 )
  • 分类:数据库

0 条评论

请先 登录 后评论

官方社群

GO教程

猜你喜欢